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ABSTRACT
A voting rule is an algorithm for determining the winner in an election,

and there are several approaches that have been used to justify the proposed

rules. One justification is to show that a rule satisfies a set of desirable

axioms that uniquely identify it. Another is to show that the calculation

that it performs is actually maximum likelihood estimation relative to a

certain model of noise that affects voters (MLE approach). The third ap-

proach, which has been recently actively investigated, is the so-called dis-
tance rationalizability framework. In it, a voting rule is defined via a class

of consensus elections (i.e., a class of elections that have a clear winner)

and a distance function. A candidate c is a winner of an election E if c

wins in one of the consensus elections that are closest to E relative to the

given distance. In this paper, we show that essentially any voting rule is

distance-rationalizable if we do not restrict the two ingredients of the rule:

the consensus class and the distance. Thus distance rationalizability of a

rule does not by itself guarantee that the voting rule has any desirable prop-

erties. However, we demonstrate that the distance used to rationalize a given

rule may provide useful information about this rule’s behavior. Specifically,

we identify a large class of distances, which we call votewise distances,

and show that if a rule is rationalized via a distance from this class, many

important properties of this rule can be easily expressed in terms of the

underlying distance. This enables us to provide a new characterization of

scoring rules and to establish a connection with the MLE framework. We

also give bounds on the complexity of the winner determination problem

for distance-rationalizable rules.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems;
I.2.4 [Knowledge representation formalisms and methods]

General Terms
Theory
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1. INTRODUCTION
Voting is an important tool that is used whenever a group of
people—or, in general, a group of agents—needs to make a joint
decision that in some way accommodates preferences and goals of
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all the participants. However, according to a famous result of Ar-
row there is no truly prefect voting system, and, throughout history,
people have come up with a great number of very diverse election
systems, each with its own advantages and flaws. The goal of this
paper is to study a recently proposed framework for defining and
analyzing voting rules, called distance rationalizability [21].

Curiously, the main idea behind this framework goes back to the
early days of mathematical study of elections, namely, to the voting
system of Dodgson. A winner of Dodgson election is a candidate
that can be made a Condorcet winner (i.e., someone who is pre-
ferred to any other candidate by a majority of voters) via the least
number of adjacent swaps in the voters’ preference lists. In other
words, Dodgson rule is defined via a notion of consensus (an elec-
tion with a clear winner; here any election with a Condorcet winner
is a consensus) and a distance function (here the distance function
between voter profiles measures the number of adjacent swaps that
transform one profile into the other). A candidate is a Dodgson
winner of election E if she is a winner in a consensus elections that
is closest to E.

Recently, Meskanen and Nurmi [21] (see also [1]) generalized
Dodgson’s approach by considering other consensus classes and
distances, and showed that many other voting rules are distance-
rationalizable, i.e., can be defined in terms of a class of consensus
elections (such as, e.g., elections with Condorcet winners, elec-
tions where all voters rank the same candidate first, etc.) and
appropriate distance functions. In particular, they gave distance-
rationalizability proofs for Kemeny, plurality, Borda, Copeland,
and some other rules. Subsequently, Elkind, Faliszewski and
Slinko [9] expanded this list by showing distance-rationalizability
of Maximin, Young, approval, and (almost) all scoring rules.

Now, the focus of papers [21, 9] was on proving distance ratio-
nalizability of specific voting rules. In this paper, we take a differ-
ent approach: Instead of looking at specific voting rules we seek
general results regarding all distance-rationalizable voting rules.
However, this goal proves to be too ambitious: we show that es-
sentially any voting rule is distance-rationalizable and thus distance
rationalizability of a rule does not by itself guarantee that the vot-
ing rule has any desirable properties; this result holds (with small
modifications) even if we restrict ourselves to a standard notion of
consensus. We therefore rephrase our question by asking if we can
derive useful conclusions about a voting rule based on the proper-
ties of a distance that is used to rationalize it.

We demonstrate that the rephrased question can be answered in
positive. Specifically, we define a large class of distances that have
a natural structure, and show that many important properties of vot-
ing rules that can be rationalized via distances from this class, such
as anonymity, neutrality and consistency, can be expressed in terms
of the underlying distances. This approach allows us to provide an
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alternative characterization of scoring rules in terms of rationaliz-
ability, and to establish interesting connections with the work on
interpreting voting rules as maximum likelihood estimators [6, 5].
Further, for voting rules defined via certain type of distances from
our class, we provide upper and lower bounds on the complex-
ity of winner determination problem, thus demonstrating that, by
constraining the allowable distances, we can turn distance rational-
izability into a useful tool for reasoning about complexity-related
issues.

Applications of voting theory play an important role in mul-
tiagent system design. Indeed, voting has been proposed as a
tool to solve planning problems [10], to design recommender sys-
tems [13], and to build meta-search engines [8]. These applica-
tions have inspired research on several aspects of voting, such as
the complexity of determining election winners (see, e.g., [14, 15,
4, 2]) or, if not all votes have been aggregated yet, possible win-
ners (see, e.g., [18, 23, 3]), and the complexity of various types of
attacks on elections (e.g., manipulation [7], bribery [11], and con-
trol [20, 12])1. So far, most of the research regarding these issues
focused on specific voting rules. In contrast, distance rationaliz-
ability provides a unified framework for defining voting rules, and,
as this paper illustrates, can also be used to reason about them.
Thus, we believe that thinking about voting rules in terms of dis-
tances and consensuses may lead to more general results for vari-
ous voting-related problems, and we view this paper as a first step
in this direction.

2. PRELIMINARIES
Elections. An election is a pair E = (C, V ) where C =
{c1, . . . , cm} is the set of candidates and V = (v1, . . . , vn) is an
ordered list of voters. We denote the number of voters in a list V
by |V |. We assume that each voter is represented by her vote, i.e., a
preference order over the candidate set; we write �i to denote the
i’th voter’s preference order. We will refer to the list V as a pref-
erence profile. For example, if we have two voters, v1 and v2, and
candidate set C = {c1, c2, c3} then we write c2 �2 c1 �2 c3 to
denote that the second voter prefers c2 to c1 to c3. We assume the
standard rational voter model, that is, preference orders are strict,
total orders over C.

A voting rule R is a function that given an election E = (C, V )
returns a set of election winners R(E), i.e., the candidates that win
this election. Note that it is legal for the set of winners to be empty
or to contain more that one candidate. To simplify notation, we
will sometimes write R(V ) instead of R(E). In what follows, we
sometimes consider voting rules defined for a particular number of
candidates (or even a particular set of candidates) only.

Below we define several prominent voting rules. Let E =
(C, V ) be an election where C = {c1, . . . , cm} and V =
(v1, . . . , vn). For voting rules that assign points, the candidates
with most points are winners.

Scoring rule R(α1,...,αm). Each candidate receives αj points
for each vote that ranks her in the j’th position. A single
scoring rule is defined for a fixed number of candidates, but
many standard voting rules can be defined in terms of fam-
ilies of scoring protocols. For example, plurality is defined
via the family of vectors (1, 0, . . . , 0), veto is defined via the
family of vectors (1, . . . , 1, 0), and Borda is defined via the

1We should point out that references regarding these lines of work
here are only examples of some of the recent works. It would be
beyond the scope of this paper to even attempt an overview of last
year’s progress regarding manipulating elections.

family of vectors (m − 1, m − 2, . . . , 0); k-approval is the
scoring rule with αi = 1 for i ≤ k, αi = 0 for i > k.

Dodgson. A Condorcet winner is a candidate that is preferred to
any other candidate by a majority of voters. The score of
a candidate c is the smallest number of swaps of adjacent
candidates that have to be performed on the votes to make c
a Condorcet winner.

Kemeny. Let � and �′ be two preference orders over C. The
number of disagreements between � and �′, denoted t(�
,�′), is the number of pairs of candidates ci, cj such that
either ci � cj and cj �′ ci or cj � ci and ci �′ cj . A
candidate ci is a Kemeny winner if there exists a preference
order � such that ci is ranked first in � and � minimizes the
sum

Pn
i=1 t(�,�i).

Distances. Let X be a set. A function d : X → R ∪ {∞} is
a distance (or, a metric) if for each x, y, z ∈ X it satisfies the
following four conditions:

1. d(x, y) ≥ 0 (nonnegativity),
2. d(x, y) = 0 if and only if x = y (identity of indiscernibles),
3. d(x, y) = d(y, x) (symmetry),
4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

If d satisfies all of the above conditions except the second one (iden-
tity of indiscernibles) then d is called a pseudodistance.

In the context of elections, it is useful to consider both distances
over votes and over entire elections (that is, distances where the set
X is the set of all linear orders over some given candidate set, and
distances where X is the set of all possible elections); we remark
that the former can be extended to the latter in a natural way (see
Section 4).

Two particularly useful distances over votes are the discrete dis-
tance and the swap distance. Let C be a set of candidates and let
u and v be two votes over C. The discrete distance ddiscr(u, v) is
defined to be 0 if u = v and to be 1 otherwise. The swap distance
dswap(u, v) is the least number of swaps of adjacent candidates
that transform vote u into vote v. The swap distance is sometimes
called Dodgson distance.

Consensus classes. Intuitively, we say that an election E =
(C, V ) is a consensus if it has an obvious, clear winner. Formally,
a consensus class is a pair (E ,W) where E is a set of elections
and W is a voting rule such that for each election E ∈ E it holds
that W(E) has exactly one member, which is called the consensus
winner. We consider the following four natural consensus classes:

Strong unanimity. Denoted S, contains elections E = (C, V )
where all voters report the same preference order. The con-
sensus winner is the candidate ranked first by all the voters.

Unanimity. Denoted U , contains all elections E = (C, V ) where
all voters rank some candidate c first. The consensus winner
is c.

Majority. Denoted M, contains all elections E = (C, V ) where
more than half of the voters rank some candidate c first. The
consensus winner is c.

Condorcet. Denoted C, contains all elections E = (C, V ) with a
Condorcet winner (defined above). The Condorcet winner is
the consensus winner.

One can certainly consider situations in which the voters reach a
consensus that several candidates are equally well qualified to be
elected. However, in this paper we limit ourselves to consensuses
with unique winners.

Distance rationalizability. We are now ready to define what it
means for a voting rule to be distance-rationalizable. The following
two definitions are copied almost verbatim from [9].
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DEFINITION 2.1. Let d be a distance over elections and let
K = (E ,W) be a consensus class. We define the (K, d)-score of
a candidate ci in an election E to be the distance (according to d)
between E and a closest election E′ ∈ E such that ci ∈ W(E′).
The set of (K, d)-winners of an election E = (C, V ) consists of
those candidates in C whose (K, d)-score is the smallest.

DEFINITION 2.2. A voting rule R is distance-rationalizable via
a consensus class K = (E ,W) and a distance d over elections (is
(K, d)-rationalizable), if for each election E, a candidate c is an
R-winner if and only if he or she is a (K, d)-winner of E.

Many of the common voting rules are distance-rationalizable in
a very natural way, see [21] and [9].

Computational complexity. We assume that the reader is famil-
iar with basic notions of computational complexity theory such
as complexity classes P and NP. In this paper we also consider
complexity classes one notch higher in the Polynomial Hierarchy,
namely Θp

2 and PNP. A decision problem belongs to PNP if it
can be solved in polynomial time as long as one has access to an
NP oracle, i.e., assuming one can solve NP decision problems at
unit cost. Intuitively, a decision problem is in Θp

2 if it is in PNP

with the additional restriction that all the queries to the NP oracle
have to be prepared before any of the answers are received, i.e., the
queries cannot be chosen adaptively. A catalog of reductions and
complexity classes can be found in [16].

We will also consider our problems from parameterized com-
plexity perspective. A problem is fixed-parameter tractable (FPT)
with respect to some parameter if there is an algorithm that for each
instance I of size n with parameter value j computes the solution
to the problem in time O(f(j)nO(1)), where f is a (computable)
function of j.

3. UNIVERSAL DISTANCE-RATIONALI-
ZABILITY RESULTS

Previous work on distance rationalizability of voting rules focuses
on showing distance rationalizability (or impossibility thereof) of
specific voting rules. In this section we take a different approach:
we show that if we do not impose any additional constraints on
allowable consensus classes and distance functions, then essentially
all rules are distance-rationalizable.

We say that a voting rule R over a set of candidates C satisfies
nonimposition if for every c ∈ C there exists an election Ec with
the set of candidates C in which c is the unique winner under R.
Clearly, nonimposition is a very weak condition that is satisfied by
all common voting rules. Nevertheless, it turns out to be sufficient
for distance-rationalizability.

THEOREM 3.1. For any voting rule R over a set of candidates
C that satisfies nonimposition, there is a consensus class KR and
a distance dR such that R is (KR, dR)-rationalizable.

PROOF. Since R satisfied nonimposition, for each c ∈ C there
exists an election Ec = (C, Vc) in which c is the unique winner.
Define an undirected graph G = (K, E) as follows. The set K
consists of all tuples of votes over C (note that this set is infi-
nite). The set E contains an edge between U and V if |R(U)| = 1
and R(U) ⊆ R(V ) or |R(V )| = 1 and R(V ) ⊆ R(U). For
any two elections EU = (C, U) and EV = (C, V ), we define
dR(EU , EV ) to be the shortest path distance between U and V in
G. It is easy to check that dR is indeed a distance.

We identify the consensus profiles with the elections that have a
unique winner, i.e., we set KR = {E | |R(E)| = 1}, and let the
winner of the KR-consensus election E be R(E).

Now, suppose that E ∈ KR. Then {E′ | dR(E, E′) = 0} =
{E}, and the unique winner in E under R is exactly the consensus
winner in the nearest KR-consensus. On the other hand, if E �∈
KR, then dR(E, E′) ≥ 1 for any election E′, and for any c ∈
R(E) we have dR(E, Ec) = 1. Moreover, for any c �∈ R(E) and
any E′ ∈ KR such that R(E′) = {c} we have dR(E, E′) ≥ 2.
Thus, the set R(E) is exactly the set of consensus winners in the
consensus profiles that are closest to E.

Arguably, the consensus class used in the proof of Theorem 3.1
includes many elections that would not normally be considered
consensus elections. However, it turns out that we can use a similar
idea to prove distance rationalizability with respect to a standard
notion of consensus, albeit under a stronger condition.

DEFINITION 3.2. Let R be a voting rule and let (E ,W) be
a consensus class. We say that R is compatible with (E ,W), or
(E ,W)-compatible if for each election E = (C, V ) in E it holds
that R(E) = W(E).

The next theorem shows that compatibility with a particular con-
sensus is equivalent to distance-rationalizability with respect to this
consensus. In what follows we prove this result for the four consen-
sus classes considered in this paper; however, it can be generalized
to any consensus class that has the property that any candidate can
be a consensus winner. Note also that any voting rule that is com-
patible with any such consensus class also satisfies nonimposition,
so the compatibility condition is more restrictive than nonimposi-
tion.

THEOREM 3.3. For any consensus class K ∈ {S,U ,M, C},
a voting rule R over a set of candidates C is K-compatible if and
only if there is a distance dK

R such that R is (K, dK
R)-rationalizable.

PROOF. The “if” direction is immediate: for any election E ∈
K, there is only one election at distance 0 from it, so the K-
consensus winner of E is the only winner in E under R.

For the “only if” direction, we use the same approach as in the
proof of Theorem 3.1; however, we will modify it slightly to ensure
that d′

R(E, E′) = +∞ if E and E′ have a different number of
voters. Let P (C) be the set of all possible votes over C. For each
n ∈ Z

+, we define an undirected graph G(C, n) = (K, E), where
the set of vertices K is P (C)n (i.e., K is the set of all possible
profiles of n votes over C), and there is an edge between U and V
if and only if (C, U) ∈ K and R(U) ⊆ R(V ) or (C, V ) ∈ K and
R(V ) ⊆ R(U).

We define the distance dK
R(E, E′) between two elections E =

(C, U), E′ = (C, V ) to be the shortest path distance between U
and V in G(C, n) if U and V are both in P (C)n for some n > 0,
and set dK

R(E, E′) = +∞ if E and E′ have a different number of
voters. The argument that R is (K, dK

R)-rationalizable follows the
same lines as the proof of Theorem 3.1.

Observe that the compatibility requirement is more stringent for
larger consensus classes: when the consensus class is S, i.e., when
all voters agree on the ordering of the candidates, it is very natural
to demand that the voters’ top choice should be the only winner.
On the other hand, there are reasonable voting rules (e.g., scoring
rules) that are not compatible with C (see, e.g., [22]). That is, using
the approach of Theorem 3.3, it is easier to rationalize voting rules
with respect to the strong consensus than with respect to any other
consensus class. However, there are common voting rules such as,
e.g., veto, and, more generally, k-approval for k > 1, that are not
compatible with S, and thus cannot be distance-rationalized with
respect to any consensus class that contains S. On the other hand,
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veto satisfies nonimposition and is therefore distance-rationalizable
via Theorem 3.1.

We view Theorem 3.3 as a negative result: it shows that almost
any voting rule is rationalizable with respect to the strong unanim-
ity consensus. Thus, knowing that a rule is distance-rationalizable,
even with respect to a standard notion of consensus, provides no
further insights about the properties of the rule, and, moreover,
the dichotomy between distance-rationalizable and non-distance-
rationalizable rules becomes essentially meaningless.

However, observe that the distances employed in the proof of
Theorem 3.3 are not particularly natural. For example, consider
two elections with the set of candidates {a, b}. In the first election
E1, there are 100 voters with preference a � b and 90 voters with
preference b � a. In the second election E2, there are 101 vot-
ers with preference a � b and 89 voters with preference b � a.
Suppose that we are trying to distance-rationalize some voting rule
R with R(E1) = R(E2) = {a} with respect to S using the ap-
proach of Theorem 3.3. By construction, the distance from both E1

and E2 to the nearest election in S is 1, while the distance between
E1 and E2 is at least 2. However, intuitively, E1 and E2 are very
similar to each other and very different from any strong consensus
profile. Thus, the distance constructed in the proof of Theorem 3.3
does not respect our intuitive understanding of similarity between
two preference profiles.

Further, all distances considered in [21] and [9] are polynomial-
time computable, even if they are used to distance-rationalize vot-
ing rules for which the winner determination problem is NP-hard
(such as Dodgson, Young or Kemeny). In contrast, it is not difficult
to see that dK

R is hard to compute for any such rule.

PROPOSITION 3.4. For any K ∈ {S,U ,M, C}, given a
polynomial-time algorithm for computing dK

R, we can construct
a polynomial-time algorithm that solves the winner determination
problem for R.

PROOF. Suppose that we are given an election E = (C, V ).
Clearly, we can check in polynomial-time if E ∈ K, and if so,
output the consensus winner; for all four consensus classes, this
can be done in polynomial time.

Otherwise, for each candidate c ∈ C, we can construct an elec-
tion Ec = (C, Vc) with the set of candidates C in which all vot-
ers in Vc have the same preference vc, c is ranked first in vc, and
all other candidates are ranked arbitrarily. Clearly, each Ec is a
strong consensus with winner c. Now, c ∈ R(E) if and only
if dK

R(E, Ec) = 1; this follows from the fact that S ⊆ K for
any K ∈ {S,U ,M, C}. Thus we can query the distance or-
acle dK

R on |C| inputs of the form (E, Ec) and output the set
{c | dK

R(E, Ec) = 1}.

Clearly, polynomial-time computability is a very important prop-
erty. Thus, Proposition 3.4 provides yet another reason why the
distances defined in the proof of Theorem 3.3 are not acceptable.

Therefore, we propose to restate the original question about
distance-rationalizability of voting rules as follows:

Can a given voting rule be distance-rationalized via a natural no-
tion of consensus and a natural distance?

Of course, the answer to this question depends on which notions
of consensus and which distances are considered natural. Now,
for the consensus classes, one can accept the classes used in [21],
[9], and the current paper as a preliminary list2; while this list is

2Paper [21] does not mention the class M, but makes use of a
consensus class that consists of all elections that correspond to an
acyclic tournament graph; paper [9] only uses the classes S, U and

probably incomplete, it is broad enough to allow us to distance-
rationalize many common rules. However, so far no attempt was
made to identify a suitable family of acceptable distances. In the
next section, we will try to fill this gap.

4. IDENTIFYING GOOD DISTANCES
We have argued that to make productive use of the notion of

distance rationalizability, we need to place restrictions on allow-
able distances. In this section, we propose a way of doing so, by
describing a large family of distances that has a very intuitive inter-
pretation and includes many distances that have been used so far to
distance-rationalize well-known voting rules.

Specifically, many (though not all) distances used in [21, 9] are
constructed by first defining a distance on individual votes and then
extending it to distances over profiles of the same length by adding
up distances between the corresponding votes. This technique can
be interpreted as taking the direct product of the metric spaces that
correspond to individual votes, and defining the distance on the
resulting space via the �1-norm.

We can generalize this approach by allowing other types of prod-
uct metrics. We start by recalling the necessary definitions.

DEFINITION 4.1. Given a vector space S over R, a norm on S
is a mapping N from S to R that satisfies the following properties:

(i) positive scalability: N(αu) = |α|N(u) for any u ∈ S and
any α ∈ R;

(ii) positive semidefiniteness: N(u) ≥ 0 for all u ∈ S, and
N(u) = 0 if and only if u is the zero vector;

(iii) triangle inequality: N(u + v) ≤ N(u) + N(v).

A well-known class of norms on R
n are the p-norms �p given by

�p(x1, . . . , xn) =

 
nX

i=1

(|xi|p)

! 1

p

,

with the convention that �∞(x1, . . . , xn) = max{x1, . . . , xn}.
A norm Nn is said to be symmetric if it satisfies

Nn(x1, . . . , xn) = Nn(xσ(1), . . . , xσ(n)) for any permutation
σ : [1, n] → [1, n]; clearly, all p-norms are symmetric.

We can now define our family of “good” distances.

DEFINITION 4.2. We say that a function d on pairs of prefer-
ence profiles is votewise if the following conditions hold:

1. d(E, E′) = +∞ if E and E′ have a different set of candi-
dates or a different number of voters.

2. For any set of candidates C, there exists a distance dC(·, ·)
defined on votes over C;

3. For any n ∈ N, there exists a norm Nn on R
n such that

for any two preference profiles E = (C, U), E′ = (C, V )
with U = (u1, . . . , un) and V = (v1, . . . , vn) we have
d(E, E′) = Nn(dC(u1, v1), . . . , dC(un, vn)).

It is well known that any function defined in this manner is a metric.
Thus, in what follows, we refer to votewise functions as votewise
distances; we will also use the term “N -votewise distance” to refer
to a votewise distance defined via a norm N , and denote a votewise
distance that is based on a distance d over votes by bd. Similarly, we
will use the term N -votewise rules to refer to voting rules that can

C for the standard model of voting, but introduces a new consensus
class to deal with approval voting.
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be distance-rationalized via one of our four consensus classes and
an N -votewise distance.

Clearly, any votewise distance is polynomial-time computable as
long as both the underlying distance on votes and the norm Nn are.

Further, it can be argued that, unlike the distances constructed
in the proof of Theorem 3.3, votewise distances respect sim-
ilarity between preference profiles. For example, it can be

shown that for any votewise distance bd, any two profiles V =
(v1, . . . , vn) and U = (u1, . . . , un), and any k ≤ n we have
bd(V, (v1, . . . , vk, uk+1, . . . , un)) ≤ bd(V, U), in accordance with
our intuition that the “hybrid” (v1, . . . , vk, uk+1, . . . , un) is more
similar to V than U is. Note that the example provided in the previ-
ous section illustrates that the distances dK

R do not, in general, have
this property: the election E2 can be viewed as a “hybrid” of E1

and the strong consensus in which all voters prefer a to b.
An important special case of our framework is when Nn is

the �1-norm, i.e., Nn(x1, . . . , xn) = x1 + · · · + xn; we will
call any such distance an additively votewise distance, or, in line
with the notation introduced above, an �1-votewise distance. So
far, �1-votewise distances were the only votewise distances used
in distance rationalizability constructions: paper [21] uses them
to distance-rationalize the Kemeny rule, Dodgson, Plurality and
Borda, and [9] shows that the construction for Borda can be gen-
eralized to all scoring rules (also using an �1-votewise distance).
However, N -votewise distances with N �= �1 are almost as easy to
work with as �1-votewise distances and may be useful for rational-
izing natural voting rules. We will now show that this is indeed the
case for a simplified version of the Bucklin rule.

DEFINITION 4.3. Given an election E = (C, V ) and a positive
integer k, 1 ≤ k ≤ |C|, we say that a candidate c is a k-majority

winner if more than |V |
2

voters rank c among the top k candidates.
Let k′ be the smallest positive integer such that there is at least
one k′-majority-winner for E. The Bucklin score of a candidate
c is the number of voters that rank her in top k′ positions. The
Bucklin winners are the candidates with the highest Bucklin score;
clearly, all of them are k′-majority winners. The simplified Bucklin
winners are all k′-majority winners.

It is easy to see that the Bucklin rule can be obtained from the
simplified Bucklin rule by breaking ties via k′-approval.3

For any vote v, let Sk(v) denote the set of all candidates ranked
in top k positions in v. Now, for any two votes u and v over the
same set of candidates C, set d(u, v) = min{k | Sk(u) = Sk(v)}.
It is easy to see that d is indeed a metric. We extend d to a distance
dsb over elections as follows. Let EU = (C, U) and EV = (C, V ),
where U = (u1, . . . , un) and V = (v1, . . . , vn). Set

dsb(EU , EV ) = max{d(ui, vi) | 1 ≤ i ≤ n}.
For elections with a different number of voters or over different
candidate sets we set dsb = ∞.

We have dsb(E, E′) = �∞(d(u1, v1), . . . , d(un, vn)), i.e.,
dsb(E, E′) is a votewise distance. We will now show that, together
with the strict majority consensus, dsb can be used to rationalize
the simplified Bucklin rule.

THEOREM 4.4. Simplified Bucklin is (M, dsb)-rationalizable.

PROOF. Let E = (C, V ) be an election with V = (v1, . . . , vn),
and let c be a candidate in C. Let k be the smallest integer such that
c is a k-majority winner.

3We mention that sometimes the term “Bucklin rule” refers to a
somewhat different voting rule. Our definition is, however, stan-
dard in computational social choice, and is used, e.g., in [6].

Now consider an arbitrary election EU = (C, U), U =
(u1, . . . , un), in which c is a strict-majority winner. We have
dsb(E, EU ) ≥ k. Indeed, for any � < k, it holds that c �∈ S�(v)

for at least
|V |
2

voters v ∈ V and c ∈ S�(u) for more than
|V |
2

voters u ∈ U . Thus, there exists at least one value of i such that
S�(ui) �= S�(vi).

On the other hand, there is a strict majority consensus EW =
(C, W ) with winner c such that dsb(E, EW ) = k. Indeed, we
can construct EW from E by shifting c to the top in each vote that
ranks c among the top k candidates (without changing anything else
in those votes).

Thus, for each simplified Bucklin winner c of E there exists an
election EW ∈ M such that EW ∈ arg minE′∈M dsb(E, E′).
That is, simplified Bucklin is (M, dsb)-rationalizable.

It turns out that the (regular) Bucklin rule can also be distance-
rationalized via M and a distance that can be obtained from dsb

by a simple transformation (but is nevertheless not a votewise dis-
tance). We omit the proof of this fact due to space constraints.

We conclude that considering votewise distances that are not
necessarily �1-votewise allows us to obtain a distance-based repre-
sentation for a broader class of voting rules, while still combining
distances between individual votes in a natural way.

In the rest of the paper, we will try to understand what can be
said about a voting rule based on the fact that it can be defined via a
votewise distance, or, more narrowly, an �1-votewise distance. We
consider two issues. First, we analyze whether such rules satisfy
the standard axioms such as anonymity, neutrality, and consistency.
Second, we consider the complexity of winner determination under
such rules.

4.1 Properties of Votewise Rules
In this section we consider three basic properties of voting rules.

Specifically, given a consensus class K and a votewise distance bd,
we ask under what circumstances the voting rule that is distance-

rationalizable via (K, bd) is anonymous, neutral, or consistent. To
start, we recall the formal definitions of these properties.

Let E = (C, V ) be an election with V = (v1, . . . , vn), and let σ
and π be permutations of V and C, respectively. For any C′ ⊆ C,
set π(C′) = {π(c) | c ∈ C′}. Let π̃(v) be the vote obtained from
v by replacing each occurrence of a candidate c ∈ C by an occur-
rence of π(c); we can extend this definition to preference profiles
by setting π̃(v1, . . . , vn) = (π̃(v1), . . . , π̃(vn)).

Anonymity. A voting rule is anonymous if its result depends only
on the number of voters reporting each preference order.
Formally, a voting rule R is anonymous if for each elec-
tion E = (C, V ) with V = (v1, . . . , vn) and each per-
mutation σ of V , the election E′ = (C, σ(V )) satisfies
R(E) = R(E′).

Neutrality. A voting rule is neutral if its result does not depend on
the candidates’ names. Formally, a voting rule R is neutral
if for each election E = (C, V ), where C = {c1, . . . , cm}
and each permutation π of C, the election E′ = (C, π̃(V ))
satisfies R(E) = π−1(R(E′)).

Consistency. A voting rule R is consistent if for any two elec-
tions E1 = (C, V1) and E2 = (C, V2) such that R(E1) ∩
R(E2) �= ∅, the election E = (C, V1+V2) (i.e., the election
where the collections of voters from E1 and E2 are concate-
nated) satisfies R(E) = R(E1) ∩R(E2).

It turns out that for votewise distance-rationalizable rules a sym-
metric norm produces an anonymous rule.
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THEOREM 4.5. Suppose that a voting rule R is (K, bd)-
rationalizable, where K ∈ {S,U ,M, C} and bd is an N -votewise
distance, where N is a symmetric norm. Then R is anonymous.

PROOF. Let EV = (C, V ), where |V | = n, be an election,
and let σ be a permutation of V . Fix a candidate c ∈ R(E), and
let EU = (C, U) be a K-consensus election with winner c that is
closest to E. We form elections E′

V = (C, V ′) and E′
U = (C, U ′)

by setting V ′ = σ(V ) and U ′ = σ(U). Observe that for any
K ∈ {S,U ,M, C} the election E′

U is a K-consensus, and, more-

over, bd(EV , EU ) = bd(E′
V , E′

U ). Now, suppose that there exists

a K-consensus election EW = (C, W ) such that bd(E′
V , EW ) <

bd(E′
V , E′

U ). Then for the election E′
W = (C, σ−1(W )) we have

bd(EV , E′
W ) = bd(E′

V , EW ) < bd(E′
V , E′

U ) = bd(EV , EU ),

a contradiction with our choice of EU . Thus, any winner of EV is
a winner of E′

V . By considering permutation σ−1, we also obtain
that any winner of E′

V is a winner of EV .

We have shown that for votewise rules, anonymity is essentially a
property of the underlying norm. In contrast, neutrality is inherited
from the underlying distance over votes.

DEFINITION 4.6. Let C be a set of candidates and let d be a
distance on votes over C. We say that d is neutral if for each per-
mutations π over C and any two votes u and v over C it holds that
d(u, v) = d(π̃(u), π̃(v)). Further, we say that a votewise distance
bd that corresponds to a distance d on votes is neutral if d is.

Our next result shows that if a votewise rule is rationalized via a
neutral distance then it itself is neutral.

THEOREM 4.7. Suppose that a voting rule R is (K, bd)-
rationalizable, where K ∈ {S,U ,M, C} and bd is a neutral vote-
wise distance. Then R is neutral.

The proof of this theorem is similar to that of Theorem 4.5 and is
omitted due to space constraints.

It is natural to ask if the converse is also true, i.e., if any neutral
votewise rule can be rationalized via a neutral distance. Indeed,
paper [5] provides a positive answer to a similar question in the
context of representing voting rules as maximum likelihood esti-
mators. However, the natural extension of the approach of [5] is
not necessarily applicable in our setting. Nevertheless, all votewise
distances that have so far arisen in the study of distance rationaliz-
ability of voting rules are neutral.

Our results for anonymity and neutrality are applicable to all
consensus classes considered in this paper. In contrast, when dis-
cussing consistency, we need to limit ourselves to the unanimity
consensus, and to �p-votewise rules.

THEOREM 4.8. Suppose that a voting rule R is (U , bd)-
rationalizable, where bd is an �p-votewise distance. Then R is con-
sistent.

PROOF. We provide a proof for �1-votewise distances; the
reader can easily verify that it generalizes to other values of p.

Let E1 = (C, V1) and E2 = (C, V2) be two elections over the
same candidate set such that R(E1) ∩ R(E2) �= ∅, and let E =
(C, V1 + V2). First, we will show that R(E1) ∩R(E2) ⊆ R(E).
Fix a candidate c ∈ R(E1) ∩ R(E2). By definition, there are two
U -consensuses, (C, U1) and (C, U2), such that for i = 1, 2, c is
the unanimity winner of (C, Ui) and

Ui ∈ arg min
(C,U)∈U

bd(Vi, U).

For the sake of contradiction, suppose that c �∈ R(E). Clearly,
(C, U1 + U2) is a unanimity consensus with winner c. As c �∈
R(E), there is another unanimity consensus (C, W1 + W2) with
|W1| = |V1|, |W2| = |V2| such that

bd(V1 + V2, U1 + U2) > bd(V1 + V2, W1 + W2).

Since bd is an �1-votewise distance, this inequality is equivalent to

bd(V1, U1) + bd(V2, U2) > bd(V1, W1) + bd(V2, W2).

However, by the choice of U1 and U2, it holds that

bd(V1, U1) ≤ bd(V1, W1), bd(V2, U2) ≤ bd(V2, W2),

which immediately yields a contradiction, and so c ∈ R(E).
To show that R(E) ⊆ R(E1) ∩R(E2), consider a c′ ∈ R(E).

Since c and c′ are both in R(E), there exists a unanimity consensus
(C, X1 + X2) with winner c′ such that |X1| = |V1|, |X2| = |V2|
and

bd(V1 + V2, X1 + X2) = bd(V1 + V2, U1 + U2).

On the other hand, we have

bd(V1, U1) ≤ bd(V1, X1), bd(V2, U2) ≤ bd(V2, X2).

It follows that both of the inequalities above are, in fact, equalities.
Thus, by our choice of U1 and U2, for i = 1, 2 we obtain Xi ∈
arg min(C,U)∈U bd(Vi, U). Since c′ is the unanimity winner in X1

and X2, it follows that c′ ∈ R(E1) ∩R(E2).

While Theorem 4.8 may hold for some norms other than �p, we
cannot hope to prove it for all votewise distances: fundamentally,
consistency is a constraint on the relationship among Ns, Nt and
Ns+t (i.e., the norms used for s voters, t voters, and s + t voters),
and our definition of votewise distances allows us to select norms
Nn for different values of n independently of each other. Further,
for our proof to work, the consensus class should be closed with
respect to “splitting” and “merging” of the consensus profiles, and
neither of the classes S, C, and M satisfies both of these condi-
tions. Indeed, for S and C the conclusion of the theorem itself is
not true: the counterexamples are provided by the Kemeny rule
and the Dodgson rule, respectively (both are not consistent, yet ra-
tionalizable via the �1-votewise distance that is based on the swap
distance).

By combining Theorems 4.5, 4.7 and 4.8, we conclude that any

rule that is (U , bd)-rationalizable, where bd is a neutral �1-votewise
distance, is neutral, anonymous and consistent; it is not hard to

check that the conclusion still holds if bd is a pseudodistance rather
than a distance. Contrast this with Young’s famous characteriza-
tion result [24], which says that every voting rule that has all three
of these properties is either a scoring rule or a composition of scor-
ing rules (see [24] for an exact definition of composition of voting
rules). It turns out that our framework allows us to refine Young’s
result by characterizing exactly the scoring rules themselves rather
than their compositions. Moreover, we can actually “extract” the
scoring rule from the corresponding distance, albeit not efficiently
(see Section 4.2 for a discussion of the related complexity issues).

THEOREM 4.9. Let R be a voting rule. There exists a neutral
�1-votewise pseudodistance bd such that R is (U , bd)-rationalizable
if and only if R can be defined via a family of scoring rules.

PROOF. The “if” direction was essentially shown in [9]; it is
not hard to see that the distance used in that proof is a neutral �1-
votewise pseudodistance.
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For the “only if” direction, let R be a (U , bd)-rationalizable vot-

ing rule, where bd is a neutral, �1-votewise (pseudo)distance based
on a (pseudo)distance d. We will now show how to derive a scoring
rule R(α1,...,αm) that corresponds to R for m candidates.

Let C = {c1, . . . , cm}, and consider an arbitrary preference
profile V = (v1, . . . , vn) over C. Fix any vote v ∈ V and let
the corresponding preference order be cj1 � . . . � cjm . For any
k = 1, . . . , m, let βk be the distance from v to the nearest vote
uk that ranks cjk first. Note that by neutrality the value of βk is
independent of our choice of v. Now, consider a candidate c that
is ranked in position ti in vi for i = 1, . . . , n. Clearly, the dis-
tance from V to the nearest profile in U in which c wins is given by
βt1 + · · · + βtn . Thus, to transform the vector β = (β1, . . . , βm)
into a scoring rule, we need to “reverse” it by setting αj = B − βj

for j = 1, . . . , m where B is large enough, e.g., B = maxm
j=1 βj .

It is immediate that R(α1,...,αm) is exactly R for m candidates.

REMARK 4.10. Note that in this paper, following Young [24],
we do not require (α1, . . . , αm) to be nondecreasing or integer.
Indeed, the distance rationalizability framework does not impose
any ordering over different positions in a vote, so it works equally
well for a scoring rule with, e.g., α1 < α2.

The above theorem allows us to partially resolve a ques-
tion from [9] regarding the relation between voting rules that
are distance-rationalizable and so-called MLEWIV voting rules.
Briefly put, Conitzer and Sandholm [6] defined a voting rule to be
MLEWIV if it can be interpreted as a maximum likelihood estima-
tor for the winner of the election.

COROLLARY 4.11. A neutral voting rule is MLEWIV if and
only if it is distance-rationalizable via a neutral �1-votewise dis-
tance and unanimity consensus.

Due to space constraints we cannot formally define MLEWIV
rules here and so we skip the proof. However, the idea is to show
that all neutral MLEWIV voting rules are in fact families of scoring
protocols. The proof, in essence, combines the ideas from our proof
of Theorem 4.9 and from a proof from [5].

Papers [6, 5] also consider maximum-likelihood estimation of
entire rankings produced by voting rules. It would be interesting to
understand how to translate results between this form of maximum-
likelihood estimation and distance-rationalizability.

4.2 The Winner Determination Problem
In this section, we focus on the computational complexity of
the winner determination problem for distance-rationalizable rules.
Clearly, to prove upper bounds on the complexity of this problem.
we need to impose restrictions on the complexity of the distance
itself. Thus, in what follows, we focus on distances that take values
in Z ∪ {∞} and are polynomial-time computable; we will call a
distance normal if it has both of these properties.

The winner determination problem can be formally stated as fol-
lows.

DEFINITION 4.12. Let R be a voting rule. In the R-winner
problem we are given an election E = (C, V ) and a candidate
c ∈ C and we ask whether c ∈ R(E).

This problem can be hard even for �1-votewise rules: for Dodgson
and Kemeny, its is known to be Θp

2-complete [14, 15]. On the posi-
tive side, for both of these rules it can be solved in polynomial time
if the number of candidates is fixed. In fact, a stronger statement
is true: the winner determination problem for both Dodgson and

Kemeny is fixed parameter tractable with respect to the number of
candidates.

We will now show that, in a sense, from the complexity perspec-
tive, Dodgson and Kemeny exhibit the worst-case behavior.

Our next theorem provides an upper bound on the complexity of
the winner determination problem for rules that are rationalizable
via a large subclass of normal distances. In particular, this bound
applies to all normal votewise distances.

THEOREM 4.13. Suppose that a voting rule R is (K, d)-
rationalizable, where K ∈ {S,U ,M, C}, and d is a normal
distance that satisfies d((C1, V1), (C2, V2)) = +∞ whenever
C1 �= C2 or |V1| �= |V2|. Then the R-winner problem is in PNP.
Moreover, if, in addition, for any two elections E1 = (C, V1) ,
E2 = (C, V2), the distance d(E1, E2) is either +∞ or at most
polynomial in |C| + |V1| + |V2|, then the R-winner problem is in
Θp

2 .

PROOF (SKETCH). Due to space constraints, we only provide
a brief outline of the proof. We can use the NP-oracle to guess a
consensus election with a given winner whose distance from the
input election does not exceed a certain (integer) value k. By using
binary search (or simply submitting an independent query for each
value of k if d is polynomially bounded), for each candidate c we
can determine the distance to the nearest consensus where c is the
winner. This allows us to identify the winner of the original elec-
tion. The additional restrictions on d are needed to ensure that the
nearest consensus profile is not too “large” relative to the input.

Note that the distance used to rationalize Dodgson and Kemeny is
polynomially bounded. On the other hand, there are natural dis-
tances that are not polynomially bounded: an example is provided
by the distances used in [9] to rationalize scoring rules.

If, in addition to being normal, the distance in question is an
�1-votewise distance, the winner determination problem is fixed-
parameter tractable with respect to the number of candidates.

THEOREM 4.14. Suppose that a voting rule R is (K, d)-
rationalizable, where K ∈ {S,U ,M, C}. and d is a normal �1-
votewise distance. Then the R-winner problem is FPT with respect
to the number of candidates.

Due to limited space we skip the proof. The main idea is that
our problem can be reformulated as an integer linear program with
O(|C|!) variables, where |C| is the number of candidates. We can
then use Lenstra’s algorithm [19]. For consensus classes S, U , and
M we can also derive algorithms that do not rely on Lenstra’s re-
sult. (This is quite useful, as Lenstra’s algorithm has a prohibitively
large multiplicative constant in its running time.)

In the previous section we have seen that neutral �1-votewise
rules that use unanimity consensus correspond to families of scor-
ing rules. Thus, one would expect their winner problems to be in P.
Note, however, that in our setting we are given the distance, but not
the scoring vector and computing the latter from the former might
be hard. Nevertheless, we can easily determine the winner if we
are allowed to use polynomial-size advice.

THEOREM 4.15. Suppose that a voting rule R is distance-
rationalizable via a normal neutral �1-votewise distance and una-
nimity consensus. Then R-winner is in P/poly.

P/poly is a complexity class that captures the power of polyno-
mial computation “with advice.” Due to space constraints, we omit
its formal definition (see, e.g., [16]) as well as the proof of Theo-
rem 4.15. However, the intuition behind the proof is very simple:
we just use the appropriate scoring rule as the advice.
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Karp–Lipton theorem [17] says that if there is an NP-hard prob-
lem in P/poly then the Polynomial Hierarchy collapses. Thus,
for voting rules that are distance rationalizable via a normal neutral
�1-votewise distance and the consensus class U the winner determi-
nation problem is unlikely to be NP-hard. In contrast, this problem
is hard for both Dodgson and Kemeny, even though they are both
rationalizable via a normal neutral �1-votewise distance (and con-
sensus classes C and S, respectively). Thus, from computational
perspective, the unanimity consensus appears to be easier to work
with than the strong consensus and the Condorcet consensus. In-
deed, both S and C impose a “global” constraint on the closest
consensus. On the other hand, U only imposes a “local” constraint:
For each vote in an election we simply seek the closest vote with
a particular candidate ranked first. We conjecture that the winner
determination problem is hard for all rules that are rationalizable
via an �1-votewise distance and C. The situation in the case of S is
more interesting, because the (rather silly) voting rule that is ratio-

nalized by (S, bddiscr) has a polynomial-time winner determination
procedure. We leave establishing the complexity of winner deter-
mination for all normal �1-votewise rules as an open problem.

5. CONCLUSIONS
We have shown that essentially any voting rule is distance-
rationalizable, even with respect to a standard notion of consen-
sus. Thus, distance-rationalizability of a rule does not by itself in-
dicate that the rule has any desirable properties. However, we have
demonstrated that if the class of allowable distances is restricted,
we can derive conclusions about certain features of a voting rule
based on the properties of the distance that was used to rationalize
it. This enables us to give a new characterization of scoring rules
in terms of distances and consensuses. We have also demonstrated
connections between our framework and the MLE approach.

We believe that there are many other applications of the distance
rationalizability framework to the analysis of voting rules: indeed,
our paper illustrates that this framework can be useful for proving
results not just for particular voting rules, but for entire families of
rules. Thus, a promising topic of future research is to find distances
and consensus classes that are both intuitively appealing and lead
to voting rules with attractive properties. Further, while this paper
took a constructive approach to defining acceptable distances, de-
veloping a normative approach, i.e., identifying axioms that should
be satisfied by all distances or all consensus classes is an exciting
research direction as well.
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